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Abstract—Irreversible entropy generation for combined forced convection heat and mass transfer in a two-
dimensional channel is investigated. The heat and mass transfer rates are assumed to be constant on both
channel walls. For the case of laminar flow, the entropy generation is obtained as a function of velocity,
temperature, concentration gradients and the physical properties of the fluid. The analogy between heat
and mass transfer is used to obtain the concentration profile for the diffusing species. The optimum plate
spacing is determined, considering that either the mass flow rate or the channel length are fixed. For the
turbulent flow regime, a control volume approach that uses heat and mass transfer correlations is devetoped
to obtain the entropy generation and optimum plate spacing.

1. INTRODUCTION

IN RECENT years, thermal systems have been analyzed
and optimized using the second law of ther-
modynamics. The present study deals with the irre-
versibilities that occur in combined forced convection
heat and mass transfer in a two-dimensional channel
flow. In order to minimize the irreversibilities in
the system, the entropy generation is investigated
{1, 2].

Bejan [3, 4] showed that the entropy generation for
forced convective heat transfer in a channel is due to
temperature gradient and viscosity effect in the fluid.
For the case of heat transfer in a circular tube, Bejan
demonstrated that when the entropy generation is
minimized, a trade-off exists between temperature and
viscosity effects. The concept of minimum entropy
generation had also been applied to design a counter-
flow heat exchanger [5], and the optimum flow
pathlength (the ratio of channel length to hydraulic
diameter), was obtained.

Bejan [6] analyzed a sensible gas-liquid heat storage
unit utilizing the second law. The optimum charging
period and optimum number of transfer units were
obtained for certain applications. The second-law per-
formance of a two-dimensional fixed-bed regenerator,
with finite wall heat conduction perpendicular to the

+To whom correspondence should be addressed.

mean flow direction was investigated by San [7]. He
obtained the optimum Ntu and non-dimensional cycle
time that yields the highest second-law efficiency for
a regenerator. He also gave a general procedure to
design a regenerator with fixed channel geometry. The
entropy generation for the case of isothermal con-
vective mass transfer was studied by San et al. [8],
using the analogy between heat and mass transfer and
considering Lewis number equal to unity and small
mass diffusion rate,

In the present study, the general entropy generation
equation is simplified to a form containing the tem-
perature, velocity and mass concentration as variables
for the case of fully-developed, two-dimensional chan-
nel flow. The mass diffusion rate is assumed to be
small, and the heat transfer and mass diffusion rates
are constant at the upper and lower walls. An order
of magnitude analysis is performed for the energy
equation in order to investigate the influence of mass
diffusion on the temperature profile. For the case of
laminar flow, the fully-developed velocity, tem-
perature and mass concentration profiles are used to
express the entropy generation in terms of the channel
geometry and fluid properties. The entropy generation
is then minimized to obtain the optimum channel
geometry for a fixed heat and mass transfer loading.
For the case of turbulent flow, the entropy generation
and optimum channel geometry are determined using
available correlations for heat transfer, mass transfer
and friction data.

1359



1360

J. Y. SaN, W. M. Worek and Z. Lavan

Cp

Cy

©

= [l Sy &y

=
a

s

M~

Ea

Mg

Nuy

Pe
Pr

"

NOMENCLATURE

C,AC concentration and concentration

difference, C,; ~ C, [molm ™3]
constant pressure specific heat
[Fmol'K~'or Jkg'K™']
constant volume specific heat
[Imol~'K~']

channel spacing fm or mm]
hydraulic diameter [m}

mass diffusivity [m?s ']

Eckert number, U%/c,nTav

Euler number, P,/p U?
non-dimensional friction coefficient,
(dP/dx) = (f/Du)(2G?/p)

rate of entropy generation per unit
volume [Jm=3s'K~]

rate of entropy generation per unit
length and depth [Jm—2s7'K 7]
rate of entropy generation per unit
depth Im~'s™'K™']

mass flux kgm~2s7']

equivalent mass flux, §"/c, mTav
[kgm~2s7"]

convective heat transfer coefficient
Wm K]

specific enthalpy of species A {Jmol™!
orkJkg™!]

specific enthalpy of mixture [kJ (kg
mixture) ']

enthalpy of mixture per unit depth
PFm™"]

mass diffusion flux [molm~2s~"]
thermal conductivity [Wm~'K ']
mass transfer coefficient [ms™']
rate of formation per unit volume
[molm~=%s~1]

length scale [m]

mass flowrate per unit depth
kgm™'s™']

rate of mass diffusion [kgm™2s7']
molecular weight {gmol~']
number of moles of specie j
Nusselt number, 4D/k

local pressure [kPa]

Peclet number, 3U,,,,D/2

Prandt! number, g#'c,/k

rate of heat transfer per unit depth and
length [Wm~?)

R gas constant [Jmol~'K™!]

Re Reynolds number, pUD,/y’

s specific entropy {Jmol~'K™']

N entropy of mixture per unit depth
ImK]

S partial molar entropy of a substance
[mol~' K"}

Sca Schmidt number, /gD, o

Shp Sherwood number, k,D/D, 5

St heat transfer Stanton number, 4/Ge,,

St,, mass transfer Stanton number, k,0/G

T,AT temperature and temperature
difference, T, — T [K]

U, Upax fluid velocity and maximum fluid
velocity [ms™!]

|4 volume [m*]

X, ¥ coordinate notations

X body force [Jmol~'m™"]

X* normalized x-direction coordinate, x/L,
Y* normalized y-direction coordinate, y/L,
or non-dimensional y-direction

coordinate, y/D.

Greek symbols

o thermal diffusivity or species [m?s™']

A difference

€ energy flux [Jm™2s~']

(/) normalized temperature,
(T—' Tz)/(Tl - Tc)

w dynamic friction coefficient of viscosity
[kgm~'s™']

u chemical potential [J mol~']

P mean fluid density (kgm ]

T normalized concentration,
(Ca—CIH(Car—Co).

Subscripts

0 reference state or wall surface

1 inlet condition

A specie A

AV average quantity

c characteristic quantity

iJ Cartesian tensor notations

m air-water vapor mixture or mean value

x,y coordinate notations.

Superscripts
rate.

2. LOCAL ENTROPY GENERATION IN
COMBINED HEAT AND MASS TRANSFER

In a continuous flow field, the generation of entropy
is due to the irreversible processes of heat transfer,

mass transfer, momentum transfer (fluid friction),
chemical reaction and the coupling between heat and
mass transfer. The general formulation for the local
entropy generation per unit volume, g, in an incom-
pressible Newtonian fluid had been derived by
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Hirschfelder et al. [9], and is given as
_ ¥ (o 6Ui+6U,-
T\ox; /| 0x; 0Ox;
ou, oT

-2 (5)+5(5)

+T8, (gf) R szm] M

where the first term is due to fluid friction and the
second and third terms are due to mass diffusion and
heat conduction. The fourth term arises from the
coupling between heat and mass transfer, the fifth
term is due to body forces, and the sixth term rep-
resents the effect due to chemical reactions.

Consider a two-dimensional channel flow with heat
and mass transfer occurring at both walls. The chemi-
cal reactions and gravitational effects are neglected,
and the fluid is considered to be a binary mixture of
two ideal gases with species A diffusing perpendicular
to the flow direction.

The chemical potential of species A can be ex-
pressed in the following form [10]:

Ba(T, Pa) = pa(T)+RT In (PA/Py) 2

where P, is the partial pressure of species A, and uj
is the standard state chemical potential of pure species
A at temperature T. If ¢, 4 is constant, u3(T) can be
expressed as [11]

T
lqu(T) = p.A(T_ To)_CI,_AT ln <?)
0

+hao—Tsa0 (3)

where P, and T, are the reference pressure and tem-
perature, and A, and s,, are the enthalpy and entropy
of the diffusing species, A, at T, and P,. For example,
let the reference state be the saturated vapor state of
water at 373.1 K and 101.35 kPa. Using calorimetric
data, the absolute entropy of liquid water at 3.169
kPa and 298.1 K is found to be equal to 66.68 J mol '
K~' [12). The difference in entropy between liquid
water at the state of 3.169 kPa, 298.1 K and saturated
water vapor at the reference state is easily determined
using the steam table to be 125.78 Jmol~' K ~'. There-
fore, 540 is equal to 192.46 J mol ' K,

Using equations (2) and (3), the partial molar
entropy of species A, S, can be simplified as

& _ Oua _ Ca
SA = <6T)pnn“‘ -“R(ln C0>

T
+coa (ln ") +5a0 D
T,

where C, is the reference mass concentration at T,
and P,

Substituting equations (2)-(4) into equation (1), the
local entropy generation, g, in a two-dimensional
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channel flow with a single species, A, diffusing in the
y-direction can be expressed as

447+ (2]
+[gj;x>+<z%m
IR )

(i) (iii)

(%)) (5) 0

@iv)

where term (i) is due to fluid friction, term (ii) is due
to mass diffusion, term (iii) is due to the flux of heat,
and term (iv) is due to the coupling effect between
heat and mass transfer.

3. ORDER OF MAGNITUDE ANALYSIS

In this section, the energy equation is normalized
and the influence of mass diffusion on the temperature
profile is determined for air-water vapor systems in a
long two-dimensional channel.

3.1. Energy equation

Neglecting any change in potential energy in the
flow field and assuming that the axial pressure gradi-
ent is small, the energy equation for the steady, two-
dimensional flow of a mixture with a small diffusion
rate of species A perpendicular to the direction of flow
can be expressed as [13]

oT oh,, oh,,
5 (65) v (5) -0 (%)
d dC,
+ & (hADv.AMA F) =0 (6)

where 4, is the specific enthalpy of the mixture and
h, is the specific enthalpy of the diffusing species, A.
Consider that the mixture is composed of ideal
gases with constant k, D, , and c,, ». In the case of small
mass diffusion rate, the constant pressure specific heat
of the mixture, ¢, can also be assumed to be
constant. Under these circumstances, equation (6) is
simplified to
o’T oT oT
o — U= =
oy? *ox ’dy

(@)05)3)
(@) () (5

dCA>
) 0. (7
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Equation (7) can be normalized into the following
form:

xAT\ %0 (U,AT\ 30 (U,AT\ &0
L2 oy L, Jox* L, Jor*

® (i) (i)

+ (on ) (MaDua ATACY 00 01
¢ pL2 oY* 3+

p,m
(iv)
0%t

¢ Y [ MaD,ATAC B
+<C )( pL,Z. 62Y*2—0 (8)

' )

where 6§ and t are the normalized temperature and
mass concentration, respectively. AT represents
(T,~T,) and AC is (Ca —C.), which are the
maximum temperature and concentration differences
in the flow field. T, and Cy, are the fluid temperature
and the concentration of species A at the inlet, and T,
and C, are the characteristic temperature and con-
centration, respectively. For example, in a two-dimen-
sional channel flow, the characteristic temperature
and concentration are the maximum (or minimum)
values on the walls if heat and mass are transferred
from the walls to the fluid (or vice versa).

In equation (8), both the temperature and con-
centration are normalized between 0 and 1. The nor-
malized concentration profile is of the same order of
magnitude as the normalized temperature profile for a
mixture with Lewis number equal to unity. Therefore,
each coefficient in equation (8) indicates the mag-
nitude of each term. The first three terms in equation
(8) govern the characteristics of the fully-developed
temperature profile in a long channel, and they are
assumed to have the same order of magnitude. The
effect of mass diffusion is included in the next two
terms in which the ratio (¢, a/c,m) is close to 1.8 for
water vapor diffusing into moist air. Comparing these
two terms to the first term, we see that the two par-
ameters, [M,D, , AC/ap] and

[((MAD, 2 AC/ap)(T/AT)),

determine the influence of mass diffusion on the tem-
perature profile. As long as both terms are much
smaller than unity, the temperature distribution and
temperature gradients will not be significantly affected
by the mass transfer. Under these circumstances, the
fully-developed temperature profile for heat transfer
alone can be used to calculate the entropy generation
in combined heat and mass transfer.

In general, for the case of coupled heat and mass
transfer in an air-water vapor system, the above two
parameters are much less than unity. For instance,
consider a long two-dimensional heat and mass ex-
changer with the following specifications: T ~ 306 K,
p=1165kgm™> M, =18 gmol™', D,, = 26.1x
10°5m2s !, AT~ 15K, 0 =22.5x10"°m? s' and

J. Y. SAN, W. M. WoReK and Z. LAvaN

AC ~ 0.0325 mol m™*. Using these data, we find
O(termiv/termi) ~ 5.8 x 107* ®
nd

I

O(term v/term i) ~ 0.012. (10)

Therefore, the temperature profile of the pure heat
transfer problem will be utilized in all calculations
for entropy generation in combined heat and mass
transfer presented here.

4. ENTROPY GENERATION IN COMBINED
HEAT AND MASS TRANSFER—LAMINAR FLOW

In order to determine the entropy generation in a
channel flow when heat and mass are being transferred
simultaneously, the velocity, temperature and con-
centration fields must be known. If the flow is fully
developed and laminar, the velocity, temperature and
concentration fields are well known and can be
directly used to evaluate the entropy generation. On
the other hand, if the flow is developing, the resulting
velocity, temperature and concentration fields must
be determined either numerically or from available
data. If the flow is turbulent only the root-mean-
square value of the velocity, temperature and con-
centration fields are well known. Therefore, to deter-
mine the entropy generation in turbulent flow, a con-
trol volume approach is used. Bejan [14] and San
[7] have shown that both approaches yield the same
results for the case of laminar flow.

4.1. Hydrodynamically fully-developed velocity profile
Consider laminar flow of a gaseous mixture in a
two-dimensional channel with a single species diffus-
ing at a small rate perpendicular to the flow direction.
Using these assumptions, with a plate spacing of 2D,
the fully-developed velocity profile is given as [15]

ch(y) = 2Umax I:Y* - <;> Y*z]

where U, and (8U,/0x) are equal to zero.

(11

4.2, Fully-developed temperature profile

As was discussed in Section 3.1, the order of mag-
nitude analysis shows that as the non-dimensional
groups [MAD,  AC/ap] and [MAD,  AC/ap][Tav/AT]
become much less than unity, the mass diffusion has
little effect on the temperature profile. Therefore, for
the condition of small mass diffusion rate, the solution
of the convective heat transfer problem is used to
determine the temperature profile in the combined
heat and mass transfer problem.

The temperature distribution in the fluid con-
sidering the flow to be fully-developed with constant
heat flux boundary conditions on both channel walls
can be solved using the successive approximation
method as described by Kays and Crawford [13]. The
solution is as follows:
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T—T, 1 1 1
2

- * __ - y#3 4 - yks 12
T T, oa4s6| ¥ —2¥ *tg¥ :I 12

where T, is the mean fluid temperature and T, is the
surface wall temperature, both depend on the axial
position within the channel.

4.3. Analogy between heat and mass transfer

The diffusion equation for species A has the same
non-dimensional form as the energy equation for the
mixture when mass diffusion effects are neglected. For
diffusion of a substance with Lewis number equal to
unity, the solution for the mass transfer problem is in
the same form as the solution for the heat transfer
problem, provided that the boundary conditions have
the same form. Therefore, the concentration profile
for the case of constant mass flux at both channel
walls is given as

Ca—Cao | [ 1 1

= * _ _ y*3 4 _ y*4
Co—Cro 0486 ¥ —27" *gY ] 13

where C,, is the mean fluid mass concentration and
Cao is the surface mass concentration in the channel.
These two variables depend on the position within the
channel. In a heat and mass exchanger, where water
vapor diffuses into air, the Lewis number is close to
unity. Therefore, equation (13) is a valid expression
for the mass concentration profile of water vapor in
the channel.

4.4. Entropy generation in fully-developed flow
Substituting equations (11)-(13) into equation (5),
the local entropy generation can be expressed as

4pU2 R}
— max 1— Y* 2 i
g ( TD? >[ I+ (DU,ACAM,i
3 1 2 q~//2 3
_ T yx2 i 74 X ] 1 R 2 'V
x[l 2Y +2Y :|+<sz 1 2Y
1 > [9.526 1 1 :
Zy*3 * __ _ y*3 _ y*4
w31 ) 5 (GF) (e - ) |
Rinsg" 3 w2, 1ousY
+<kTMA>(1_§Y +§Y .
For small temperature and mass concentration
variations in the channel, the entropy generation per
unit depth and length, 4, can be obtained by inte-

grating equation (14) across the channel width, 2D.
This yields

2D
y’EJ gdy
0
_ 3 wm? + ﬁ RDm?
2 TAVPZD3 35 Dv,ACAVM.i
o (2)(RDam (34, 335) (4D
35/ \kM,Thy 35 ' Per J\kT3,)

(15)

(14)
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In the above two equations, the Peclet number, Pe,
gives the relative importance of the lateral transport
(y-direction) to the axial transport (x-direction). Usu-
ally, the Peclet number for non-metallic substances is
very large. For example, considering air at 300 K,
a=225%x10"°" m* s, Up=115 m s7!, D=
0.00125 m, the Peclet number is equal to 95.8.
Therefore, in an air-water vapor system, those terms
containing the Peclet number can be neglected. Using
this result, equation (15) can be simplified as

_ 3 W 34 RDrin}
g=\sN\7——7=2p3 )t \c\ 57 22
2/ \Tavp°D 35/ \DyaCavMi
34\ (¢"*D 34\ [ RDq¢"m,
~(3)() - () (Er) o

Equation (16) indicates that the entropy generation
at any cross-section is independent of x for this case
(constant heat flux). Using equation (16), the opti-
mum design of a channel in which heat and mass
transport occur simultaneously can be found by mini-
mizing the total irreversible entropy generation.

4.5. Optimum design criterion

The four terms in equation (16) depend differently
on the plate spacing, 2D. The first term is inversely
proportional to the cube of the channel spacing, while
the others are linearly proportional to the channel
spacing. As the plate spacing decreases, the velocity
gradient will become larger, consequently, increasing
the entropy generation due to fluid friction.
Conversely, decreasing the plate spacing reduces the
temperature and the mass concentration gradients,
which in turn, reduces the entropy generation due to
heat and mass transfer, provided that the heat and
mass transfer rates still remain the same. Therefore, a
plate spacing, 2D, that minimizes the total entropy
generation can be determined with all the other par-
ameters fixed. This optimum plate spacing will give
the optimum channel design for a required heat and
mass transfer rate. Using equation (16), the optimum
plate spacing, 2D, can be expressed as

1260
(2D)op: = (1—7>

”,mz 1/4
Tavp
17
ng qnz q~ude ( )
Dy ACavMi ~ kTiv ~ kTayM,

4.6. Two-dimensional entropy generation profile

Using equation (14) and neglecting the axial con-
duction terms, we see that the local entropy generation
is minimum at the center of the channel, i.e.

at Y*=1.0, gm.=0. (18)
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Upper Plate

-' "
q
——e e
Main Stream
1y

=

g

Lower Plate
F1G. 1. Two-dimensional model.

This result is due to the symmetry of the velocity,
temperature and mass concentration profiles at the
nnnnnnn
and mass diffusion across the centerline. Similarly, the
location of the maximum entropy generation occurs
at the surfaces of the channel. The numerical value
can be determined using the following expression :

at Y¥*=0and 2.0

9 w'? Rni}
Gmax = | 5 24 + 2
4/ \p*D Ty D ACAMZ
Yyl s
g Rimyq
+ kT2, + KTny My (19)

4.7. Numerical example—heat and mass exchanger

Consider a two-dimensional channel in which heat
and mass are transferred simultaneously (Fig. 1). Let
both heat and water vapor diffuse at a constant rate
from channel surfaces and let the total mass flowrate
of air per unit depth passing through the exchanger
be 0.0066 kg m~' s~!. The constant heat flux and mass
diffusion rate are given as follows: ¢" = —70.86
W m™2 iy =229x10"° kg m~? s~'. The minus
sign indicates that the heat flux is transferred from
the control surface to the surroundings. For air:
p=1165 kg m™? ' =18x10"° kg m~! s},
k=2637x10"> W m~' K~'. For water vapor:
M, =18 g mol™!, D,, =26.1x107° m? s7'. The
average fluid temperature, T,y, is 306 K. The average
concentration of water vapor, Cyuy, calculated using
the ideal gas equation of state is 1.03 mol m~>.

The Reynolds number based on the hydraulic
radius for this problem is 733, verifying that the flow
is in the laminar flow regime. Using equation (17), the
optimum plate spacing, 2D, can be found as follows
(Fig. 2):

(2D)op = 2.75 mm. (20)

The total entropy generation per unit depth and
length in the channel is equal to 4.35x 107> Jm~?s~"
K~!. The fraction of entropy generation due to

friction is 25.1%, due to the mass diffusion is 15.3%,
and due to the heat transfer is 62.5%. The coupling
effect due to simultancous heat and mass transport
reduces the total entropy generation by 2.9% (Fig. 3).
In the case of convective heat transfer or isothermal
convective mass transfer, respectively, the con-
centration or temperature is uniform in the flow field.
Thus, the coupling effect in either case will be equal
to zero.

The non-dimensional temperature and mass con-
centration variations respectively are evaluated as

AT o AC .

(T,w> < 5%, Coo < 3.5%.

Therefore, the assumption of small temperature and

mass concentration variations is reasonable. Also, it

is found that the two parameters governing the mass

diffusion effect in the energy equation have the fol-
lowing order of magnitude

M,D,AAC\[ T .
| (529G <
M,D,, A
[M]<0.l%. (22)
ap

Hence, the analogy between heat and mass transfer is
suitable for this problem.

@n

4.8. Turbulent and/or developing flow

4.8.1. Control volume approach. There is no exact
solution for the velocity, temperature and mass con-
centration distributions for turbulent channel flow.
Therefore, a control volume analysis, based on the
average fluid properties over the channel cross-sec-
tional area, is developed and solved using the results
of turbulent flow correlations. The control volume is
shown in Fig. 4. The main stream is a binary mixture
with a single species, A, diffusing from the planar walls
into the main stream. The simultaneous exchange of
heat and mass between the boundaries and the main
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Entropy Generation, g (W/m?K)
e
o
b
|

| L 1 1 1
0 0.002 0.004 0.006 0.008 0.010 0.012

Plate Spacing, 2D (m)

F1G. 2. Entropy generation vs plate spacing.

4.0

Heat Transfer
Mass

Friction
Coupling Effect

g
2Em.
'NER

»
=]

Local Entropy Generation, g (W/m?K)
et
=)

o

-10 1
0 0.5D D 1.5D 2D
Cross-stream Location, y
FiG. 3. Distribution of local entropy generation in the channel.
stream causes a continuous non-equilibrium field of Applying the second law of thermodynamics to the
temperature, pressure and chemical potential in the control volume, we obtain
flow, and thus an irreversible generation of entropy. 24" dx
In order to simplify the analysis, the present study is g = a8 —2(ry/My)s, dx — T TAT 23)
based on the two-dimensional model as considered avt
previously. where dS is the total rate of increase in entropy as the

HMT 30:7-I
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Tuv + AT, fiavs ha, Sa Upper Plate
Control ‘ 1
Vol X .
olume & fag
h
s Tav +dT
2D :AV Main Stream St ds
H H+dH
my q"
Ti + AT, pav, ha, Sa Lower Plate

X

X+dX

FiG. 4. Control volume approach in combined heat and mass transfer.

fluid flows through the small segment dx, the second
term on the right-hand side of the equation is the total
entropy of the substance diffusing into the control
volume and the last term is the entropy increase due to
the heat transfer occurring across the control surface,
which is at temperature (Txy+AT). Tay is the mean
fluid temperature and AT is the temperature difference
between the mean fluid and the control surface.

Applying the first law of thermodynamics to the
control volume, we obtain

dH = 24" dx+2(mg/ M, )ha dx 29

where dH is the total rate of increase in enthalpy of
the mixture and A, is the specific enthalpy of species
A as it enters the control volume.

The Gibbs’ equation for a binary fluid mixturc at a
temperature, Tay, can be written as

2
dH = TAV dS+ Vdp + Z HAv.i dn,».

il

2%

Combining equations (23)—(25), the entropy gen-
eration can be expressed as

- 2q"dx> 1 (V)
g=< - —{LZ)aP
T, AT T
AV 1+ =2

2my dX> ( ha #Av)
+ = — sy — =) (26
< M, Tav " Tav (26)

Using the ideal gas equation of state and the defi-
nition of chemical potential yields

I:f'i_s _“AV}” (ﬂ)
Tpy AT Ty PA\ Tav

AT Ca >
—Caln|{14+ — ]+ Rln . (27
A ( TAV) (CAV ( )

For the case of small temperature and mass con-
centration variations in the flow field, equation (27)
can be further simplified using the Taylor series expan-

sion. Neglecting the higher order terms of AT/T,y and
AC/Cyy, it yields

ha HAv] (AT) (AC)

— — S — e | R{— ]+ R|—) 28
[T,w YR TG TR es) @Y
Substituting equation (28) into equation (26) and

dividing § by dx. The entropy generation (per unit
length and depth), §, can be expressed as

7= (E)(20)+ (28)(29)
() (@) -(7)(@) e

Using the definitions of Nusselt and Sherwood num-
bers, AT and AC can be climinated from equation
(29). Also, consistent with the assumption of small
diffusion rate, the pressure gradient termn can be
approximately expressed as: (dP/dx) ~ (fm?*/8oL?).
Therefore, the entropy generation (per unit length and
depth) takes on the following form:

- 2 q-nzD N i rthD
9= Nu, | kT2 Shp Du,ACAVM/i
0 (ii)
“Imz

ol b+ Q)] @
v it | T \2) DT | O
(iii) @iv)

where in this result term (i) represents the heat transfer
effect, term (ii) is the mass diffusion effect, term (iii)
is due to the coupling effect between heat and mass
transfer and term (iv) is the fluid friction effect. No
other assumptions have been made in equation (30)
except small mass diffusion rate and small tem-
perature and mass concentration variations in the flow
field. Hence, equation (30) can be applied to laminar
and turbulent flows as well as to a developing flow at

the entrance of a channel.
The relative magnitude of the four terms in
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equation (30) is obtained by comparing the mass
diffusion, the coupling and the fluid friction effects to
the heat transfer effect. We obtain the following three
expressions :

g_mass/g-heﬂt = (Sth/Stm )EuA EC(P/PA )(md/Geq )2 (31)
g-coupling/g_heat = (1 - Cv,m/cp.m )(md/ch)

g_f'riclion/g-heat = (3/4)(Sth Ec/Re)(G/Geq )

(32)
(33)

where G is the mass flux of the mixture and G, is the
equivalent mass flux which is defined as: (§"/c,mTav)-
The equivalent mass flux is a fictitious quantity indi-
cating the strength of the heat flux on the boundary
surfaces. In equations (31) and (32), the mass diffusion
and coupling effects are compared to the heat transfer
effect respectively, thus the ratio of the mass diffusion
rate to the equivalent mass flux is used to indicate the
relative magnitude between the heat flux and mass
diffusion rate. In equation (33), the fluid friction effect
is compared to the heat transfer effect, thus the ratio
of the mass flux in the main stream to the equivalent
mass flux is used to indicate the relative magnitude.
For air-water vapor systems, the heat transfer Stan-
ton number is close to the mass transfer Stanton num-
ber, (St,/St,,) ~ 1.0. The density ratio, (p/p4), is of
the order of 100. The product, Fu, Ec, is close to 0.46
and the ratio, ¢, ./¢c,m, is 0.72. Hence, the coupling
effect is generally small as compared to the other
effects.

As the non-dimensional groups [M.D, . AC/ap]
and [M D, A AC/up][Tay/AT] become much less than
unity, the fully-developed temperature profile tends
to be independent of mass transfer. Further, by
neglecting the viscous dissipation in the energy equa-
tion, the analogy between heat and mass transfer is
valid. Under these circumstances, the corresponding
Nusselt and Sherwood numbers are constant and the
optimum plate spacing, 2D, can be expressed as

1 (g
(2D)op = {(36) < e )/ [Nu,; (quiv>

1 MR 1 [ rygR
* Sy (D cAvMi> Ny (kMA o) 1§ &Y

For the case of constant heat flux and constant rate
of mass diffusion in a laminar flow with Lewis number
equal to unity, both the Nusselt and Sherwood num-
bers in equation (34) are equal to 2.058 and yield the
same optimum plate spacing as equation (17).

For turbulent flow problems, we may substitute the
Nusselt and Sherwood numbers based on the half
channel spacing, D, into equation (34) with the fol-
lowing turbulent correlations [13]:

Nuy = 0.0055Pr%° Re®® 0.5< Pr<10 3%5)

Shp = 0.00555¢3° Re®® 0.5 < Scy <1.0.  (36)
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Equations (35) and (36) are valid for gas in the range
of 3x 10* < Re < 10°,

4.8.2. Finite temperature and mass concentration
variation case. As the temperature variation and the
mass concentration variation increase, equation (30)
will yield an error due to the linearization in equation
(28). If both (AT/Ty) and (AC/C,y) are less than
unity and the mass diffusion rate is still small, a cor-
rection of equation (34) which yields the optimum
plate spacing is developed by including more terms in
the Taylor series expansion. For example, in general
equation (27) can be expressed as

ha Hav AT
[TAV S —?::I r (K)
n (_1)n+| AT n
s ol
n l n+ 1 AC n
R 3 [( '3 (C,w> ] @7

Using the relation

1 n (_l)n AT n+ 1
~— AL e
1+ (a0)

Tav

Substituting equations (37) and (38) into equation
(26), and again introducing the Nusselt and Sherwood
numbers, the entropy generation can be expressed as

-G (el

®
2¢,am4\( ¢ D
+< M, )(TA‘/)':"N“D]
(i)
5 (= 1)"+I 2¢, Aty gy
Z:{ n! ( M, )<TAV>
(iii)
D n n (2R)( )n+| md n+ 1
X [kNuD] } L {—— (ﬁ:)
(iv)
D n 3 ”/'ﬁZ
X [Dv,AcAvShD] }+ <§>(TAVPZD3) 9
(89

where now in equation (39), term (i) is the heat trans-
fer effect, terms (ii) and (iii) are due to the coupling
effect, term (iv) represents the mass diffusion effect
and term (v) is the fluid friction effect. Choosing an
appropriate number of terms in the series expansions,
the optimum plate spacing can be solved numerically.
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5. CONCLUSIONS

The entropy gencration due to mass diffusion has

a similar form to that due to heat transfer, and both
are linearly dependent on the channel spacing. The
relative magnitude between the mass diffusion effect
and the heat transfer effect depends on (St,/St,,)Eu,
X l'?:::(,o/,s,\)(M'qd/Geq)2 in which the equivalent mass
flux indicates the strength of the heat flux. The coup-
ling effect is small as compared to the other effects
and it can be a negative value when the heat transfer
is opposite in direction to the mass transfer.

As the heat flux or mass diffusion rate approaches
zero, the entropy generation and optimum plate spac-
ing for the process of combined heat and mass transfer
reduce to the results for the processes of convective
heat transfer and isothermal convective mass transfer,
respectively. In either case, the coupling effect will
approach zero. At plate spacing less than the optimum
value, the entropy generation increases sharply. How-
ever, at plate spacing greater than the optimum value,
the entropy generation increases only gradually.

The optimum plate spacing derived in this work is
based on small temperature and concentration vari-
ations in the flow field. However, in the case of finite
temperature and concentration variations, the pre-
sented series expansion method can be used to obtain
the optimum plate spacing.

In the case of laminar flow, since both the Nusseit
and Sherwood numbers are constant, the four differ-
ent sources of entropy generation are coupled only
through the plate spacing. On the other hand, in the
case of turbulent flow, the four sources of entropy
generation are coupled through both the plate spacing
and Reynolds number.
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CREATION D’ENTROPIE DANS LE TRANSFERT COMBINE DE CHALEUR ET DE
MASSE

Résumé—On étudie la création irréversible d’entropie pour la convection combinée de chaleur et de masse
dans un canal bidimensionnel dont les deux parois sont 4 flux uniforme de chaleur et de masse. Dans le
cas de I'écoulement laminaire, la création d’entropie est obtenue en fonction des gradients de vitesse, de
température, et de concentration et des propriétés du fluide. L’analogie entre transfert de chaleur et de
masse est utilisée pour obtenir le profil de concentration des espéces qui diffusent. On détermine I'espacement
optimum des parois en considérant fixé le débit ou la longueur du canal. Pour le régime turbulent, on
développe I'approche par volume de contrdle qui utilise Jes formules de transfert de chaleur et de masse et
on obtient la création d’entropie et I'espacement optimal.
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ENTROPIEERZEUGUNG BEIM GEKOPPELTEN WARME- UND STOFFTRANSPORT

Zusammenfassung—Es wurde die Entropieerzeugung beim gekoppelten Wirme- und Stofftransport in
erzwungener Konvektion in einem zweidimensionalen Kanal untersucht. Die Wirme- und Stoffiibertragung
wird an beiden Kanalwinden als konstant angenommen. Fiir den Fall laminaren Strémung erhélt man
die Entropieerzeugung als eine Funktion von Geschwindigkeit, Temperatur, Konzentrationsgradienten
und den physikalischen Eigenschaften des Fluids. Die Analogie zwischen Wérme- und Stoffiibertragung
wird dazu benutzt, die Konzentrationsprofile zu ermitteln. Der optimale Plattenabstand wird unter der
Bedingung, daBl entweder der Massendurchsatz oder die Kanallinge konstant gehalten wird, bestimmt.
Fiir turbulente Stromung wird eine Néherung mit Hilfe eines Kontrollvolumens, das Wirme- und Stoff-
libertragungsbeziehungen benutzt, entwickelt, um die Entropieerzeugung und den optimalen Plattenabstand
zu ermitteln.

MPOMU3BOJACTBO SHTPOIUHU NP COBMECTHOM TEILJIO-U MACCONNEPEHOCE

Annotamms—Hccrenyercs npou3BOACTBO HEPABHOBECHON JHTPOMHHM MJIS CAyYas BbIHYXICHHOKOHBEK-
THBHOTO TEIJIO-H MacCOMEPEHOCa B IBYMEPHOM KaHaje, KOrJa MOTOKH TEIUIa M Macchl MOCTOSHHBI Ha
obenx crenkax kaHana. Ilpy n1aMHHapHOM TeEYeHHMH HalIEHO NMPOM3BOLCTBO JHTPONHH Kak GYHKLMH
rPafMeHTOB CKOPOCTH, TEMNEepaTypbl H KOHLECHTPALMH, a Takke GHU3M4ecKuX CBOMCTB XHakocTH. s
noJtyyeHus npoduis KoHUCHTpaunu OH(GOYHIHPYIOIMX BEIIECTB HCMOJIL3YETCH AHAOTHS MEXOy Tem-
JIONEpeHOCOM H MacconeperocoM. [Ipy 3alaHHBIX MaccOBOM pacxoie Nubo IUTHHE KaHalla OnpenesieHo
ONTHMAJILHOE PACCTOSAHME MeX Y MuacTHHaMu. [{nsa TypOyieHTHOro pexuma paspaboTaH cnocod Hame-
peHnsi 06beMa, B KOTOPOM HCMOJIB3YETCA CBA3b MEXAY MEPEHOCOM TeMa M MEPEHOCOM MAcchl IS
onpeneNieHHda MPOU3BOACTBA IHTPOMMHA H ONITUMANBHOIO PACCTOAHHA MEXIY MIACTHHAMH.
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