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A~~aet-Irreversible entropy generation for combined forced conv~tion heat and mass transfer in a two- 
dimensional channel is investigated. The heat and mass transfer rates are assumed to be constant on both 
channel walls. For the case of laminar flow, the entropy generation is obtained as a function of velocity, 
temperature, concentration gradients and the physical properties of the fluid. The analogy between heat 
and mass transfer is used to obtain the concentration profile for the diffusing species. The optimum plate 
spacing is determined, considering that either the mass flow rate or the channel length are fixed. For the 
turbulent flow regime, a control volume approach that uses heat and mass transfer correlations is developed 

to obtain the entropy generation and optimum plate spacing. 

1. INTRODUCTION 

IN RECENT years, thermal systems have been analyzed 
and optimized using the second law of ther- 
modynamics. The present study deals with the irre- 
versibilities that occur in combined forced convection 
heat and mass transfer in a two-dimensional channel 
flow. In order to minimize the irreversibilities in 
the system, the entropy generation is investigated 

11, 21. 
Bejan [3,4] showed that the entropy generation for 

forced convective heat transfer in a channel is due to 
temperature gradient and viscosity effect in the fluid. 
For the case of heat transfer in a circular tube, Bejan 
demonstrated that when the entropy generation is 
minimized, a trade-off exists between temperature and 
viscosity effects. The concept of minimum entropy 
generation had also been applied to design a counter- 
flow heat exchanger [S]: and the optimum flow 
pathlength (the ratio of channel length to hydraulic 
diameter), was obtained. 

Bejan [6] analyzed a sensible gas-liquid heat storage 
unit utilizing the second law. The optimum charging 
period and optimum number of transfer units were 
obtained for certain applications. The second-law per- 
formance of a two-dimensional fixed-bed regenerator, 
with finite wall heat conduction perpendicular to the 

t To whom correspondence should be addressed. 

mean flow direction was investigated by San [7]. He 
obtained the optimum Ntu and non-dimensional cycle 
time that yields the highest second-law efficiency for 
a regenerator. He also gave a general procedure to 
design a regenerator with fixed channel geometry. The 
entropy generation for the case of isothermal con- 
vective mass transfer was studied by San et al. [S], 
using the analogy between heat and mass transfer and 
considering Lewis number equal to unity and small 
mass diffusion rate. 

In the present study, the general entropy generation 
equation is simplified to a form containing the tem- 
perature, velocity and mass concentration as variables 
for the case of fully-developed, two-dimensional chan- 
nel flow. The mass diffusion rate is assumed to be 
small, and the heat transfer and mass diffusion rates 
are constant at the upper and lower walls. An order 
of magnitude analysis is performed for the energy 
equation in order to investigate the influence of mass 
diffusion on the temperature profile. For the case of 
laminar flow, the fully-developed velocity, tem- 
perature and mass concentration profiles are used to 
express the entropy generation in terms of the channel 
geometry and fluid properties. The entropy generation 
is then minimized to obtain the optimum channel 
geometry for a fixed heat and mass transfer loading. 
For the case of turbulent flow, the entropy generation 
and optimum channel geometry are determined using 
available correlations for heat transfer, mass transfer 
and friction data. 
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NOMENCLATURE 

concentration and concentration 
difference, C,, - C, [mol m-“1 
constant pressure specific heat 
[J mol-’ K-’ or J kg-’ K-‘ j 
constant volume specific heat 
[J mol-’ K-l] 
channel spacing [m or mm] 
hydraulic diameter [ml 
mass diffusivity [m’s_‘] 
Eckert number, V’/C~.,TAV 
Euler number, PA/p* U2 
non-dimensional friction coefficient, 

(dJ’lrd4 = (f/D,)(2G ‘,P) 
rate of entropy generation per unit 
volume [J rnd3 s-’ K-‘1 
rate of entropy generation per unit 
length and depth [Jm-‘s-’ K-‘1 
rate of entropy generation par unit 
depth [J m-’ s-l K-l] 
mass flux ~gm-2s-‘] 
equivalent mass flux, $Ic~,,,,TAV 
[kg me2 s-‘1 
convective heat transfer coefficient 
[Wm-‘K-‘1 
speciSc enthalpy of species A [Jmol-’ 
or kJ kg-‘] 
specific enthalpy of mixture [kJ (kg 
mixture)-‘] 
enthalpy of mixture per unit depth 
[J m-‘1 
mass diffusion flux [mol mW2 s- ‘1 
thermal conductivity w m-’ K-‘1 
mass transfer coefficient [m S-‘1 
rate of formation per unit volume 
[mol mm3 s-‘1 
length scale [m] 
mass flowrate per unit depth 
Fgm-’ s-‘1 
rate of mass diffusion Fg m-’ S-‘1 

molecular weight [gmol-‘1 
number of moles of specie j 
Nusselt number, hD/k 
local pressure [kPa] 
Peclet number, 3 V,,,D/2 
Prandtl number, $cplk 
rate of heat transfer per unit depth and 
length [w m-‘1 

R gas constant [Jmol-’ K-‘1 
Re Reynolds number, p VDh/p‘ 
s specific entropy fJmol-’ K-‘1 
S entropy of mixture per unit depth 

[Jm-‘K-‘1 
s partial molar entropy of a substance 

[J mol-’ K-‘1 

=A Schmidt number, ~‘/pD”,~ 

ShD Sherwood number, kJl/Do,A 

St, heat transfer Stanton number, h/Gcp,m 

stm mass transfer Stanton number, k,p/G 
T, AT temperature and temperature 

difference, T, - T, [K] 

V, VIII,, fluid velocity and maximum fluid 
velocity [m s-l] 

V volume [m3] 

X-Y coordinate notations 
x body force [J mol-’ m- ‘1 
x* normalized x-direction coordinate, x/Lx 
Y* normalized y-direction coordinate, y/L, 

or non-~rn~sion~ y-direction 
coordinate, y/D. 

Greek symbols 

: 
thermal diffusi~ty or species [m2 s- ‘I 
difference 

E energy flux [J m-' s-‘1 
@ normalized temperature, 

(T- T,)I(T, - Tc) 
$ dynamic friction coefficient of viscosity 

[kgm -’ s-l1 
P chemical potential [J mol-‘1 

P mean fluid density [kg m-3] 
7 normalized concentration, 

(C,- CXC,, - Cc). 

Subscripts 
0 reference state or wall surface 
1 inlet condition 
A specie A 
AV average quantity 
C characteristic quantity 

4j Cartesian tensor notations 
m air-water vapor mixture or mean value 

X,Y coordinate notations. 

Superscripts 
rate. 

2. LOCAL ENTROPY GENERATION IN mass transfer, momentum transfer (fluid friction), 
COMBINED HEAT AND MASS TRANSFER chemical reaction and the coupling between heat and 

mass transfer. The general fo~ulation for the local 
In a continuous flow field, the generation of entropy entropy generation per unit volume, g, in an incom- 

is due to the irreversible processes of heat transfer, pressible Newtonian fluid had been derived by 
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Hirschfelder et al. [9], and is given as 

where the first term is due to fluid friction and the 
second and third terms are due to mass diffusion and 
heat conduction. The fourth term arises from the 
coupling between heat and mass transfer, the fifth 
term is due to body forces, and the sixth term rep- 
resents the effect due to chemical reactions. 

Consider a two-dimensional channel flow with heat 
and mass transfer occurring at both walls. The chemi- 
cal reactions and gravitational effects are neglected, 
and the fluid is considered to be a binary mixture of 
two ideal gases with species A diffusing perpendicular 
to the flow direction. 

The chemical potential of species A can be ex- 
pressed in the following form [lo] : 

PAU,PA) = A(T)+R~lnU’AIPo) (2) 

where P, is the partial pressure of species A, and & 
is the standard state chemical potential of pure species 
A at temperature T. If c,,~ is constant, y:(T) can be 
expressed as [ 111 

pi(T) = cp,A(T- T,)-c,+T ln f 
0 0 

fbo- Wo (3) 

where PO and To are the reference pressure and tem- 
perature, and hAO and sAo are the enthalpy and entropy 
of the diffusing species, A, at To and PO. For example, 
let the reference state be the saturated vapor state of 
water at 373.1 K and 101.35 kPa. Using calorimetric 
data, the absolute entropy of liquid water at 3.169 
kPa and 298.1 K is found to be equal to 66.68 J mol-’ 
KM’ [12]. The difference in entropy between liquid 
water at the state of 3.169 kPa, 298.1 K and saturated 
water vapor at the reference state is easily determined 
using the steam table to be 125.78 J mol-’ K-‘. There- 
forerr,, is equal to 192.46 J mol-’ K-‘. 

Using equations (2) and (3), the partial 
entropy of species A, L?,, can be simplified as 

s*G -(!!&l,.,+,= -R(ln2) 

molar 

+ &,A (4) 

where Co is the reference mass concentration at To 
and PO. 

Substituting equations (2~(4) into equation (1), the 
local entropy generation, g, in a two-dimensional 

channel flow with a single species, A, diffusing in the 
y-direction can be expressed as 

(9 

(ii) (iii) 

(5) 

(iv) 

where term (i) is due to fluid friction, term (ii) is due 
to mass diffusion, term (iii) is due to the flux of heat, 
and term (iv) is due to the coupling effect between 
heat and mass transfer. 

3. ORDER OF MAGNITUDE ANALYSIS 

In this section, the energy equation is normalized 
and the influence of mass diffusion on the temperature 
profile is determined for air-water vapor systems in a 
long two-dimensional channel. 

3.1. Energy equation 
Neglecting any change in potential energy in the 

flow field and assuming that the axial pressure gradi- 
ent is small, the energy equation for the steady, two- 
dimensional flow of a mixture with a small diffusion 
rate of species A perpendicular to the direction of flow 
can be expressed as [ 131 

+ $ h,D,,M,~ 
> 

= 0 (6) 

where h, is the specific enthalpy of the mixture and 
hA is the specific enthalpy of the diffusing species, A. 

Consider that the mixture is composed of ideal 
gases with constant k, D,,, and c~,~. In the case of small 
mass diffusion rate, the constant pressure specific heat 
of the mixture, I+,,, can also be assumed to be 
constant. Under these circumstances, equation (6) is 
simplified to 

a2T aT aT 
u,,-Q,,-4, 

+(E)p+)@(g 

+(E)(+)T($)=O. (7) 
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Equation (7) can be normalized into the following 

form : 

(9 (ii) (iii) 

M~D>,,~ ATAC de a7 
-- PG ay* ay* 

(iv) 

+(E)(MA:;;Ac)&=O (8) 

(4 

where Q and r are the normalized temperature and 
mass concentration, respectively. AT represents 
(T, - TJ and AC is (C,, -C,), which are the 
maximum temperature and concentration differences 
in the flow field. T, and C,, are the fluid temperature 
and the concentration of species A at the inlet, and T, 
and C, are the characteristic temperature and con- 
centration, respectively. For example, in a two-dimen- 
sional channel flow, the characteristic temperature 
and concentration are the maximum (or minimum) 
values on the walls if heat and mass are transferred 
from the walls to the fluid (or vice versa). 

In equation (8), both the temperature and con- 
centration are normalized between 0 and 1. The nor- 
malized concentration profile is of the same order of 
magnitude as the normalized temperature profile for a 
mixture with Lewis number equal to unity. Therefore, 
each coefficient in equation (8) indicates the mag- 
nitude of each term. The first three terms in equation 
(8) govern the characteristics of the fully-developed 
temperature profile in a long channel, and they are 
assumed to have the same order of magnitude. The 
effect of mass diffusion is included in the next two 
terms in which the ratio (c,,,~/c~,~) is close to 1.8 for 
water vapor diffusing into moist air. Comparing these 
two terms to the first term, we see that the two par- 
ameters, [MADV,A AC/ccp] and 

determine the influence of mass diffusion on the tem- 
perature profile. As long as both terms are much 
smaller than unity, the temperature distribution and 
temperature gradients will not be significantly affected 
by the mass transfer. Under these circumstances, the 
fully-developed temperature profile for heat transfer 
alone can be used to calculate the entropy generation 
in combined heat and mass transfer. 

In general, for the case of coupled heat and mass 
transfer in an air-water vapor system, the above two 
parameters are much less than unity. For instance, 
consider a long two-dimensional heat and mass ex- 
changer with the following specifications : T - 306 K, 
p = 1.165 kg mP3, MA = 18 g mol-‘, DO,* = 26.1 x 

10P6m2 s-‘, AT N 15 K, c( = 22.5 x 10e6 m* ss’ and 

AC - 0.0325 mol mm3. Using these data, we find 

and 

O(term iv/term i) - 5.8 x 10m4 (9) 

O(term v/term i) - 0.012. (10) 

Therefore, the temperature profile of the pure heat 
transfer problem will be utilized in all calculations 
for entropy generation in combined heat and mass 
transfer presented here. 

4. ENTROPY GENERATION IN COMBINED 

HEAT AND MASS TRANSFER-LAMINAR FLOW 

In order to determine the entropy generation in a 
channel flow when heat and mass are being transferred 
simultaneously, the velocity, temperature and con- 
centration fields must be known. If the flow is fully 
developed and laminar, the velocity, temperature and 
concentration fields are well known and can be 
directly used to evaluate the entropy generation. On 
the other hand, if the flow is developing, the resulting 
velocity, temperature and concentration fields must 
be determined either numerically or from available 
data. If the flow is turbulent only the root-mean- 
square value of the velocity, temperature and con- 
centration fields are well known. Therefore, to deter- 
mine the entropy generation in turbulent flow, a con- 

trol volume approach is used. Bejan [14] and San 
[7] have shown that both approaches yield the same 
results for the case of laminar flow. 

4.1. Hydrodynamically fully-developed velocity projle 
Consider laminar flow of a gaseous mixture in a 

two-dimensional channel with a single species diffus- 
ing at a small rate perpendicular to the flow direction. 
Using these assumptions, with a plate spacing of 20, 
the fully-developed velocity profile is given as [ 151 

WY) = 2unlax [Y*-(;)y**] (11) 

where U, and (aU,/ax) are equal to zero. 

4.2. Fully-developed temperature profile 
As was discussed in Section 3.1, the order of mag- 

nitude analysis shows that as the non-dimensional 

groups ]MAD,,.~ AWPI and [MAD,.,A W~PI[TAVIWI 
become much less than unity, the mass diffusion has 
little effect on the temperature profile. Therefore, for 
the condition of small mass diffusion rate, the solution 
of the convective heat transfer problem is used to 
determine the temperature profile in the combined 
heat and mass transfer problem. 

The temperature distribution in the fluid con- 
sidering the flow to be fully-developed with constant 
heat flux boundary conditions on both channel walls 
can be solved using the successive approximation 
method as described by Kays and Crawford [13]. The 
solution is as follows : 
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.*A,*3 +;Y*4 1 (12) 
where T,,, is the mean fluid temperature and T,, is the 
surface wall temperature, both depend on the axial 
position within the channel. 

4.3. Analogy between heat and mass transfer 
The diffusion equation for species A has the same 

non-dimensional form as the energy equation for the 
mixture when mass diffusion effects are neglected. For 
diffusion of a substance with Lewis number equal to 
unity, the solution for the mass transfer problem is in 
the same form as the solution for the heat transfer 
problem, provided that the boundary conditions have 
the same form. Therefore, the concentration profile 
for the case of constant mass flux at both channel 
walls is given as 

c*-c*o 1 1 1 
C,,, -C,, 0.486 y*--y*3+-y*4 2 8 1 (13) 

where C,,, is the mean fluid mass concentration and 
C,, is the surface mass concentration in the channel. 
These two variables depend on the position within the 
channel. In a heat and mass exchanger, where water 
vapor diffuses into air, the Lewis number is close to 
unity. Therefore, equation (13) is a valid expression 
for the mass concentration profile of water vapor in 
the channel. 

4.4. Entropy generation in fully-developed$ow 
Substituting equations (1 lt( 13) into equation (S), 

the local entropy generation can be expressed as 

+;Y*3)2+(!?g)(y*-;y*3+;y*4)2] 

Rtil&j” 

( )( ) 

2 

+ kTM, 
1 _;y*z+;y*’ . (14) 

For small temperature and mass concentration 
variations in the channel, the entropy generation per 
unit depth and length, 8, can be obtained by inte- 
grating equation (14) across the channel width, 20. 
This yields 

In the above two equations, the Peclet number, Pe, 
gives the relative importance of the lateral transport 
(y-direction) to the axial transport (x-direction). Usu- 
ally, the Peclet number for non-metallic substances is 
very large. For example, considering air at 300 K, 
u = 22.5x 10e6 m2 s-l, U,,, = 1.15 m s-‘, D = 
0.00125 m, the Peclet number is equal to 95.8. 
Therefore, in an air-water vapor system, those terms 
containing the Peclet number can be neglected. Using 
this result, equation (15) can be simplified as 

‘= (;)(&)+ (~)(,.~:~2,) 

+($(~)+($(~). (16) 

Equation (16) indicates that the entropy generation 
at any cross-section is independent of x for this case 
(constant heat flux). Using equation (16), the opti- 
mum design of a channel in which heat and mass 
transport occur simultaneously can be found by mini- 
mizing the total irreversible entropy generation. 

4.5. Optimum design criterion 
The four terms in equation (16) depend differently 

on the plate spacing, 20. The first term is inversely 
proportional to the cube of the channel spacing, while 
the others are linearly proportional to the channel 
spacing. As the plate spacing decreases, the velocity 
gradient will become larger, consequently, increasing 
the entropy generation due to fluid friction. 
Conversely, decreasing the plate spacing reduces the 
temperature and the mass concentration gradients, 
which in turn, reduces the entropy generation due to 
heat and mass transfer, provided that the heat and 
mass transfer rates still remain the same. Therefore, a 
plate spacing, 20, that minimizes the total entropy 
generation can be determined with all the other par- 
ameters fixed. This optimum plate spacing will give 
the optimum channel design for a required heat and 
mass transfer rate. Using equation (16), the optimum 
plate spacing, 20, can be expressed as 

4.6. Two-dimensional entropy generation profile 
Using equation (14) and neglecting the axial con- 

duction terms, we see that the local entropy generation 
is minimum at the center of the channel, i.e. 

at Y* = 1.0, gmin = 0. (18) 
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Upper Plate 

r -I- --T-l 
. c, 
P 4-l 1 

Lower Plate 

FIG. 1. Two-dimensional model. 

This result is due to the symmetry of the velocity, 
temperature and mass concentration profiles at the 
center of the channel, and it results in no heat transfer 
and mass diffusion across the centerline. Similarly, the 
location of the maximum entropy generation occurs 
at the surfaces of the channel. The numerical value 
can be determined using the following expression : 

at Y* = 0 and 2.0 

. I, 2 
4 R&4” 

+ kT& + kTAVMA’ (19) 

4.1. Numerical example-heat and mass exchanger 
Consider a two-dimensional channel in which heat 

and mass are transferred simultaneously (Fig. 1). Let 
both heat and water vapor diffuse at a constant rate 
from channel surfaces and let the total mass flowrate 
of air per unit depth passing through the exchanger 
be 0.0066 kg m-’ s-r. The constant heat flux and mass 
diffusion rate are given as follows: 4” = -70.86 
W rnm2, tid = 2.29 x 10-j kg mm2 s-‘. The minus 
sign indicates that the heat flux is transferred from 
the control surface to the surroundings. For air: 
p = 1.165 kg me3, p’ = 1.8x 10e5 kg mm’ s-‘, 
k = 26.37 x 10e3 W m-’ K-‘. For water vapor: 
MA = 18 g mall’, Do,* = 26.1 x lop5 m2 ss’. The 
average fluid temperature, T,,“, is 306 K. The average 
concentration of water vapor, CA”, calculated using 
the ideal gas equation of state is 1.03 mol rnm3. 

The Reynolds number based on the hydraulic 
radius for this problem is 733, verifying that the flow 
is in the laminar flow regime. Using equation (17) the 
optimum plate spacing, 20, can be found as follows 
(Fig. 2) : 

(2D),,, = 2.75 mm. (20) 

The total entropy generation per unit depth and 
length in the channel is equal to 4.35 x 10m3 J mm2 s-’ 
K-l. The fraction of entropy generation due to 

friction is 25.1%, due to the mass diffusion is 15.3%, 
and due to the heat transfer is 62.5%. The coupling 
effect due to simultaneous heat and mass transport 
reduces the total entropy generation by 2.9% (Fig. 3). 
In the case of convective heat transfer or isothermal 
convective mass transfer, respectively, the con- 
centration or temperature is uniform in the flow field. 
Thus, the coupling effect in either case will be equal 
to zero. 

The non-dimensional temperature and mass con- 
centration variations respectively are evaluated as 

< 5%, (21) 

Therefore, the assumption of small temperature and 
mass concentration variations is reasonable. Also, it 
is found that the two parameters governing the mass 
diffusion effect in the energy equation have the fol- 
lowing order of magnitude 

[ (^:;““) (&)I< 1.5%, 

yJ$AA”] < 0.1%. (22) 

Hence, the analogy between heat and mass transfer is 
suitable for this problem. 

4.8. Turbulent and/or developingflow 
4.8.1. Control volume approach. There is no exact 

solution for the velocity, temperature and mass con- 
centration distributions for turbulent channel flow. 
Therefore, a control volume analysis, based on the 
average fluid properties over the channel cross-sec- 
tional area, is developed and solved using the results 
of turbulent flow correlations. The control volume is 
shown in Fig. 4. The main stream is a binary mixture 
with a single species, A, diffusing from the planar walls 
into the main stream. The simultaneous exchange of 
heat and mass between the boundaries and the main 
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0 0.002 0.004 0.006 0.008 

Plate Spacing, 2D (m) 

FIG. 2. Entropy generation vs plate spacing. 

A 

0.010 0.012 

I = Heat Transfer 
II = Mass 

III = Friction 
IV = Coupling Effect 

t 
Iv lv 

-1.0 
0 0.5 D D 1.5D 

Crmbrtream Location, y 

FIG. 3. Distribution of local entropy generation in the channel. 

2D 

stream causes a continuous non-equilibrium field of Applying the second law of thermodynamics to the 
temperature, pressure and chemical potential in the control volume, we obtain 
flow, and thus an irreversible generation of entropy. 
In order to simplify the analysis, the present study is ; = dS-2(ti,/M&, dx - 
based on the two-dimensional model as considered 

ST (23) 

previously. where dS is the total rate of increase in entropy as the 

“MT 30:7-r 
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T, + AT, IC*V, h*. S, Upper Plate 

A 

E,:--T---r-i 

I 

.I 
9 Q 

FL 1 
I 

Main stream 
2D 

, T,+dT 

S 
* S+dS 

H 
I H+dH 

I I 

! 
I Y__i_J 

I 
T, + AT, ~Avr h*, S. 

I 
Lower Plate 

X x+dX 

FIG. 4. Control volume approach in combined heat and mass transfer. 

fluid flows through the small segment dx, the second 
term on the right-hand side of the equation is the total 
entropy of the substance diffusing into the control 
volume and the last term is the entropy increase due to 
the heat transfer occurring across the control surface, 
which is at temperature (TAv+ AT). TAv is the mean 
fluid temperature and ATis the temperature difference 
between the mean fluid and the control surface. 

Applying the first law of thermodynamics to the 
control volume, we obtain 

dH = 24” dx + Z&/MA )hA dx (24) 

where dH is the total rate of increase in enthalpy of 
the mixture and hA is the specific enthalpy of species 
A as it enters the control volume. 

The Gibbs’ equation for a binary fluid mixture at a 
temperature, TAV, can be written as 

dH = TAv dS+ Vdp + ; p,,v,i dn,. (25) 
r< I 

Combining equations (23)-(25), the entropy gen- 
eration can be expressed as 

(26) 

Using the ideal gas equation of state and the defi- 
nition of chemical potential yields 

-c,,ln(l +g)+Rln(&). (27) 

For the case of small temperature and mass con- 
centration variations in the flow field, equation (27) 
can be further simplified using the Taylor series expan- 

sion. Neglecting the higher order terms of AT/T,, and 
AC/CA,, it yields 

hA 
--s~-~]=R(~)+R(~). (28) 
T A” 

Substituting equation (28) into equation (26) and 
dividing 0 by dx. The entropy generation (per unit 
length and depth), i, can be expressed as 

+(22)(g)- (;)@). (29) 

Using the definitions of Nusselt and Sherwood num- 
bers, AT and AC can be eliminated from equation 
(29). Also, consistent with the assumption of small 
diffusion rate, the pressure gradient term can be 
approximately expressed as : (dP/dx) N (fm2/8pL3). 
Therefore, the entropy generation (per unit length and 
depth) takes on the following form : 

(9 (ii) 

+&[$$?I+ (;)[&I (30) 

(iii) (iv) 

where in this result term (i) represents the heat transfer 
effect, term (ii) is the mass diffusion effect, term (iii) 
is due to the coupling effect between heat and mass 
transfer and term (iv) is the fluid friction effect. No 
other assumptions have been made in equation (30) 
except small mass diffusion rate and small tem- 
perature and mass concentration variations in the flow 
field. Hence, equation (30) can be applied to laminar 
and turbulent flows as well as to a developing flow at 
the entrance of a channel. 

The relative magnitude of the four terms in 
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equation (30) is obtained by comparing the mass 
diffusion, the coupling and the fluid friction effects to 
the heat transfer effect. We obtain the following three 
expressions : 

~frictian/&teat = (3/4)(% JWWGIG, ) (33) 

where G is the mass flux of the mixture and G,, is the 
equivalent mass flux which is defined as : (cj”/~,,~T~~). 
The equivalent mass flux is a fictitious quantity indi- 
cating the strength of the heat flux on the boundary 
surfaces. In equations (3 1) and (32), the mass diffusion 
and coupling effects are compared to the heat transfer 
effect respectively, thus the ratio of the mass diffusion 
rate to the equivalent mass flux is used to indicate the 
relative magnitude between the heat flux and mass 
diffusion rate. In equation (33) the fluid friction effect 
is compared to the heat transfer effect, thus the ratio 
of the mass flux in the main stream to the equivalent 
mass flux is used to indicate the relative magnitude. 
For air-water vapor systems, the heat transfer Stan- 
ton number is close to the mass transfer Stanton num- 

ber, (St,/%) - 1.0. The density ratio, (p/pA), is of 
the order of 100. The product, EuA EC, is close to 0.46 
and the ratio, c,,,/c~,.,,, is 0.72. Hence, the coupling 
effect is generally small as compared to the other 
effects. 

As the non-dimensional groups [A4ADV,A AClaP] 
and [II~~D”,~ AC/ap][T,,/AT] become much less than 
unity, the fully-developed temperature profile tends 
to be independent of mass transfer. Further, by 
neglecting the viscous dissipation in the energy equa- 
tion, the analogy between heat and mass transfer is 
valid. Under these circumstances, the corresponding 
Nusselt and Sherwood numbers are constant and the 
optimum plate spacing, 20, can be expressed as 

For the case of constant heat flux and constant rate 
of mass diffusion in a laminar flow with Lewis number 
equal to unity, both the Nusselt and Sherwood num- 
bers in equation (34) are equal to 2.058 and yield the 
same optimum plate spacing as equation (17). 

For turbulent flow problems, we may substitute the 
Nusselt and Sherwood numbers based on the half 
channel spacing, D, into equation (34) with the fol- 
lowing turbulent correlations [ 131: 

Nu = 0 0055Pr0-5 Re’.’ D . 0.5 < Pr < 1.0 (35) 

Sh D = 0.0055S~~~~ Re’.” A 0.5 < ScA < 1.0. (36) 

Equations (35) and (36) are valid for gas in the range 
of3x104<Re< 10’. 

4.8.2. Finite temperature and mass concentration 
variation case. As the temperature variation and the 
mass concentration variation increase, equation (30) 
will yield an error due to the linearization in equation 
(28). If both (AT/TAV) and (AC/C,,) are less than 
unity and the mass diffusion rate is still small, a cor- 
rection of equation (34) which yields the optimum 
plate spacing is developed by including more terms in 
the Taylor series expansion. For example, in general 
equation (27) can be expressed as 

h --sA-~]=cp,A($g T A” 

-c”.,;, [q ($1 

+R;, [q($]. (37) 

Using the relation 

~l-l+l,)]=~o[~(~~+‘]. t3*) 
T AV 

Substituting equations (37) and (38) into equation 
(26), and again introducing the Nusselt and Sherwood 
numbers, the entropy generation can be expressed as 

(9 

+&y(&)[&] 
(ii) 

_;, (‘-3”” (s!!$)(xJ 

(iii) 

x [&I] + 3, {(2R)(;l)“+’ ($J” 
(iv) 

’ [Du,A:,Shol’} + (3) (&) (39) 

09 

where now in equation (39), term (i) is the heat trans- 
fer effect, terms (ii) and (iii) are due to the coupling 
effect, term (iv) represents the mass diffusion effect 
and term (v) is the fluid friction effect. Choosing an 
appropriate number of terms in the series expansions, 
the optimum plate spacing can be solved numerically. 
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5. CONCLUSIONS 

The entropy generation due to mass diffusion has 
a similar form to that due to heat transfer, and both 
are linearly dependent on the channel spacing. The 
relative magnitude between the mass diffusion effect 
and the heat transfer effect depends on (St,,/&,,)Eu, 
xEc(p/p,)(tiz,/G,,)* in which the equivalent mass 

flux indicates the strength of the heat flux. The coup- 
ling effect is small as compared to the other effects 
and it can be a negative value when the heat transfer 
is opposite in direction to the mass transfer. 

As the heat flux or mass diffusion rate approaches 
zero, the entropy generation and optimum plate spac- 
ing for the process of combined heat and mass transfer 
reduce to the results for the processes of convective 
heat transfer and isothermal convective mass transfer, 
respectively. In either case, the coupling effect will 
approach zero. At plate spacing less than the optimum 
value, the entropy generation increases sharply. How- 
ever, at plate spacing greater than the optimum value, 
the entropy generation increases only gradually. 

The optimum plate spacing derived in this work is 
based on small temperature and concentration vari- 
ations in the flow field. However, in the case of finite 
temperature and concentration variations, the pre- 
sented series expansion method can be used to obtain 
the optimum plate spacing. 

In the case of laminar flow, since both the Nusselt 
and Sherwood numbers are constant, the four differ- 
ent sources of entropy generation are coupled only 
through the plate spacing. On the other hand, in the 
case of turbulent Sow, the four sources of entropy 
generation are coupled through both the plate spacing 
and Reynolds number. 
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CREATION D’ENTROPIE DANS LE TRANSFERT COMBINE DE CHALEUR ET DE 
MASSE 

R&m&-On etudie la creation irreversible d’entropie pour la convection combinQ de chaieur et de masse 
dam un canal bidimensionnel dont les deux parois sont a llux uniforme de chaleur et de masse. Dam le 
cas de l’ecoulement laminaire, la creation d’entropie est obtenue en fonction des gradients de vitesse, de 
temperature, et de concentration et des prop&es du &tide. L’analogie entre transfert de chaleur et de 
masse est utilisee pour obtenir le profil de concentration des especes qui diffusent. On determine l’espacement 
optimum des parois en considerant fixi le debit ou la longueur du canal. Pour le regime turbulent, on 
diveloppe l’approche par volume de contrble qui utilise les formules de transfert de chaleur et de masse et 

on obtient la creation d’entropie et l’espacement optimal. 
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ENTROPIEERZEUGUNG BEIM GEKOPPELTEN WARME- UND STOFFTRANSPORT 

Znsammenfassung-Es wurde die Entropieerzeugung beim gekoppelten Warme- und Stofftransport in 
erzwungener Konvektion in einem zweidimensionalen Kanal untersucht. Die Wlrme- und Stoffiibertragung 
wird an beiden Kanalwanden als konstant angenommen. Filr den Fall laminaren Striimung erhalt man 
die Entropieerzeugung als eine Funktion von Geschwindigkeit, Temperatur, Konzentrationsgradienten 
und den physikalischen Eigenschaften des Fluids. Die Analogie zwischen Warme- und Stoffiibertragung 
wird dazu benutzt, die Konzentrationsprofile zu ermitteln. Der optimale Plattenabstand wird unter der 
Bedingung, daD entweder der Massendurchsatz oder die Kanallange konstant gehalten wird, bestimmt. 
Filr turbulente Strijmung wird eine Nlherung mit Hilfe eines Kontrollvolumens, das Wlrrne- und Stoff- 
iibertragungsbeziehungen benutzt, entwickelt, urn die Entropieerzeugung und den optimalen Plattenabstand 

zu ermitteln. 

fIPOM3BO~CTBO 3HTPOHMM I-IPM COBMECTHOM TEHJ-IO-M MACCOI-IEPEHOCE 

AHHOTaulWF-MCCneAyeTCn npOH3BOACTBO IiCpaBHOBCCHOti 3HTpOnWW AJlK CAyvan BbIHyXAeHHOKOHBeK- 

THBHO~O Tenn0-A MacconepeHoca B AByMepHoM KaHane,KorAa noToKH Terma w htaccbl UOCTORHH~I Ha 

o6ewx CTeHKaX KaHaAa. npH JlaMBHapHOM TeYeHBB HafiAeHO npOH3BOACTBO 3HTpOnAH KBK @yHKUWH 

I'paAHeHTOB CKOPOCTH, TeMnepaTypbI A KOHUeHTpaW%,, a TaKXE &l3AYCCKHX CBOiiCTB XKHAKOCTH. aA,, 

nony~eHsn npo@snr xotiueHTpaueu AH@~HAH~~KWWX aeulecTe mznonbsyercn aktanorwn Mewy Ten- 

nonepeHocoh4 w Macconepemcohf. llpe 3aAaHHbtx MaccoBoM pacxone nw6o anme KaHana onpeAeneH0 

OnTUhtanbHoepaccTonHne MexcAy nnac'reHaMn.~nnTyp6yneHTHOrO pennMa pa3pa6oTaHcnoco6HsMe- 

peHBR o6%eMa, B KOTOPO~~ iicnonb3yeTcn CB113b MemAy IlePeHOCOM renna n nepeHocoM MaCCbI Am 


